skip to main content


Search for: All records

Creators/Authors contains: "Zhu, Yuting"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hydrogen peroxide (H 2 O 2 ) is an important reactive oxygen species (ROS) in natural waters, affecting water quality via participation in metal redox reactions and causing oxidative stress for marine ecosystems. While attempts have been made to better understand H 2 O 2 dynamics in the global ocean, the relative importance of various H 2 O 2 sources and losses remains uncertain. Our model improves previous estimates of photochemical H 2 O 2 production rates by using remotely sensed ocean color to characterize the ultraviolet (UV) radiation field in surface water along with quantitative chemical data for the photochemical efficiency of H 2 O 2 formation. Wavelength- and temperature-dependent efficiency (i.e., apparent quantum yield, AQY) spectra previously reported for a variety of seawater sources, including coastal and oligotrophic stations in Antarctica, the Pacific Ocean at Station ALOHA, the Gulf of Mexico, and several sites along the eastern coast of the United States were compiled to obtain a “marine-average” AQY spectrum. To evaluate our predictions of H 2 O 2 photoproduction in surface waters using this single AQY spectrum, we compared modeled rates to new measured rates from Gulf Stream, coastal, and nearshore river-outflow stations in the South Atlantic Bight, GA, United States; obtaining comparative differences of 33% or less. In our global model, the “marine-average” AQY spectrum was used with modeled solar irradiance, together with satellite-derived surface seawater temperature and UV optical properties, including diffuse attenuation coefficients and dissolved organic matter absorption coefficients estimated with remote sensing-based algorithms. The final product of the model, a monthly climatology of depth-resolved H 2 O 2 photoproduction rates in the surface mixed layer, is reported for the first time and provides an integrated global estimate of ∼21.1 Tmol yr −1 for photochemical H 2 O 2 production. This work has important implications for photo-redox reactions in seawater and improves our understanding of the role of solar irradiation on ROS cycling and the overall oxidation state in the oceans. 
    more » « less
  2. Abstract. Here we present measurement results of temporal distributions of nitrous acid (HONO) along with several chemical and meteorologicalparameters during the spring and the late summer of 2019 at Tudor Hill Marine Atmospheric Observatory in Bermuda. Large temporal variations inHONO concentration were controlled by several factors including local pollutant emissions, air mass interaction with the island, andlong-range atmospheric transport of HONO precursors. In polluted plumes emitted from local traffic, power plant, and cruise ship emissions,HONO and nitrogen oxides (NOx) existed at substantial levels (up to 278 pptv and 48 ppbv, respectively),and NOx-related reactions played dominant roles in daytime formation of HONO. The lowest concentration of HONO wasobserved in marine air, with median concentrations at ∼ 3 pptv around solar noon and < 1 pptv during thenighttime. Considerably higher levels of HONO were observed during the day in the low-NOx island-influenced air([NO2] < 1 ppbv), with a median HONO concentration of ∼ 17 pptv. HONO mixing ratios exhibiteddistinct diurnal cycles that peaked around solar noon and were lowest before sunrise, indicating the importance of photochemical processes forHONO formation. In clean marine air, NOx-related reactions contribute to ∼ 21 % of the daytime HONOsource, and the photolysis of particulate nitrate (pNO3) can account for the missing source assuming a moderate enhancement factorof 29 relative to gaseous nitric acid photolysis. In low-NOx island-influenced air, the contribution from bothNOx-related reactions and pNO3 photolysis accounts for only ∼ 48 % of the daytime HONOproduction, and the photochemical processes on surfaces of the island, such as the photolysis of nitric acid on the forest canopy, might contributesignificantly to the daytime HONO production. The concentrations of HONO, NOx, and pNO3 were lowerwhen the site was dominated by the aged marine air in the summer and were higher when the site was dominated by North American air in the spring,reflecting the effects of long-range transport on the reactive nitrogen chemistry in background marine environments. 
    more » « less
  3. Abstract

    A photochemical model was used to quantify the global contribution of carbonyl photoproduction in the photodegradation of marine dissolved organic carbon (DOC). As model input, wavelength‐ and temperature‐dependent apparent quantum yields (AQYs) for the photochemical production of carbonyl compounds were determined in seawater collected from the Northwest Atlantic Ocean. These AQY data and published AQY data from the North Pacific were used with remotely sensed seawater optical properties and solar irradiance data in a global model to calculate depth‐resolved, mixed‐layer photochemical fluxes of acetaldehyde and glyoxal in seawater. Based on this model, the annual global surface mixed‐layer photochemical production is 89.7 ± 36 Tg year−1for acetaldehyde and 20.0 ± 8.0 Tg year−1for glyoxal. This work significantly improves our understanding of the impact of photochemistry on the cycling of DOC in the surface oceans. Low‐molecular‐weight carbonyl compounds represent the second largest carbon flux among all known carbon products that are produced during the photolysis of DOC. The annual photoproduction of carbonyl‐compound carbon is ~110 ± 23 Tg C year−1, comprising approximately 9.6% of the total carbon and 22% of the biologically labile carbon that are produced globally from the photolysis of marine DOC.

     
    more » « less
  4. Abstract

    During September–October 2016, a marine aerosol generator configured with forced‐air Venturis was deployed at two biologically productive and two oligotrophic regions of the western North Atlantic Ocean to investigate factors that modulate primary marine aerosol (PMA) production. The generator produced representative bubble size distributions with Hinze scales (0.32 to 0.95 mm radii) and void fractions (0.011 to 0.019 LairLsw‐1) that overlapped those of plumes produced in the surface ocean by breaking wind waves. Hinze scales and void fractions of bubble plumes varied among seawater hydrographic regions, whereas corresponding peaks and widths of bubble size distributions did not, suggesting that variability in seawater surfactants drove variability in plume dynamics. Peaks in size‐resolved number production efficiencies for model PMA (mPMA) emitted via bubble bursting in the generator were within a narrow range (0.059 to 0.069 μm geometric mean diameter) over wide ranges in subsurface bubble characteristics, suggesting that subsurface bubble size distributions were not the primary controlling factors as was suggested by previous work. Total mass production efficiencies for mPMA decreased with increasing air detrainment rates, supporting the hypothesis that surface bubble rafts attenuate mPMA mass production. Total mass and Na+production efficiencies for mPMA from biologically productive seawater were significantly greater than those from oligotrophic seawater. Corresponding mPMA number distributions peaked at smaller sizes during daytime, suggesting that short‐lived surfactants of biological and/or photochemical origin modulated diel variability in marine aerosol production.

     
    more » « less